全站数据
9 6 1 5 2 8 3

求基到基的过渡矩阵

教育小百科 | 教育先行,筑梦人生!         

假设有2组基分别为A,B。由基A到基B可以表示为B=AP,过渡矩阵P=A^-1B。

过渡矩阵是基与基之间的一个可逆线性变换,在一个空间V下可能存在不同的基。

求基到基的过渡矩阵

它表示的是基与基之间的关系。

若X是在A基下的坐标,而Y是在B基下的坐标,则X、Y满足X=PY。

过渡矩阵为可逆矩阵。证明如下:

求基到基的过渡矩阵

证:过渡矩阵是线性空间一个基到另一个基的转换矩阵,即有(a1,...,an) = (b1,...,bn)P

因为 b1,...,bn 线性无关,

所以 r(P) = r(a1,...,an) = n 【满秩即可逆】

故 P 是可逆矩阵。

猜你喜欢内容

更多推荐