热门推荐








法国最早有成就的数学家
问题描述
- 精选答案
-
皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家,但对数学的贡献超过了大部分专业数学家。
17世纪初,欧洲流传着公元三世纪古希腊数学家丢番图所写的《算术》一书。l621年费马在巴黎买到此书,他利用业余时间对书中的不定方程进行了深入研究。费马将不定方程的研究限制在整数范围内,从而开始了数论这门数学分支。
费马在数论领域中的成果是巨大的,其中主要有:
费马大定理:n>2是整数,则方程x^n+y^n=z^n没有满足xyz≠0的整数解。这个是不定方程,它已经由英国数学家怀尔斯证明了(1995年),证明的过程是相当艰辛的!
费马小定理:a^p-a≡0(mod p),其中p是一个素数,a是正整数,它的证明比较简单。事实上它是Euler定理的一个特殊情况,Euler定理是说:a^φ(n)-1≡0(mod n),a,n都是正整数,φ(n)是Euler函数,表示和n互素的小于n的正整数的个数(它的表达式欧拉已经得出,可以在“Euler公式”这个词条里找到)。
另外还有:(1)全部大于2的素数可分为4n+1和4n+3两种形式。
(2)形如4n+1的素数能够,而且只能够以一种方式表为两个平方数之和。
(3)没有一个形如4n+3的素数,能表示为两个平方数之和。
(4)形如4n+1的素数能够且只能够作为一个直角边为整数的直角三角形的斜边;4n+1的平方是且只能是两个这种直角三角形的斜边;类似地,4n+1的m次方是且只能是m个这种直角三角形的斜边。
(5)边长为有理数的直角三角形的面积不可能是一个平方数。
(6)4n+1形的素数与它的平方都只能以一种方式表达为两个平方数之和;它的3次和4次方都只能以两种表达为两个平方数之和;5次和6次方都只能以3种方式表达为两个平方数之和,以此类推,直至无穷。
(7)发现了第二对亲和数:17296和18416。
费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌:他是解析几何的发明者之一;对于微积分诞生的贡献仅次于艾萨克·牛顿、戈特弗里德·威廉·凡·莱布尼茨,他还是概率论的主要创始人,以及独撑17世纪数论天地的人。此外,费马对物理学也有重要贡献。一代数学天才费马堪称是17世纪法国最伟大的数学家。
猜你喜欢内容
-
阿拉奶粉3段和2段的区别
阿拉奶粉3段和2段的区别回答数有3条优质答案参考
-
西安未央宫遗址公园坐几路公交到
西安未央宫遗址公园坐几路公交到回答数有3条优质答案参考
-
安徽理工大学全国排名及王牌专业
安徽理工大学全国排名及王牌专业回答数有3条优质答案参考
-
安徽理工大学好吗
安徽理工大学好吗回答数有3条优质答案参考
-
汉长安城未央宫遗址公园怎么进去
汉长安城未央宫遗址公园怎么进去回答数有3条优质答案参考
-
安徽理工大学好不好
安徽理工大学好不好回答数有3条优质答案参考
-
上海最好录取的国际高中
上海最好录取的国际高中回答数有3条优质答案参考
-
兴城温泉哪家好
兴城温泉哪家好回答数有3条优质答案参考
-
兴城距离海边最近的酒店
兴城距离海边最近的酒店回答数有3条优质答案参考
-
兴城哪家宾馆住宿好
兴城哪家宾馆住宿好回答数有3条优质答案参考