全站数据
8 4 2 0 5 8 1

导数的斜率怎么求

英语学习英语学习 | 教育先行,筑梦人生!         
问题更新日期:2024-11-05 11:04:32

问题描述

导数的斜率怎么求求高手给解答
精选答案
最佳答案

导数就是斜率。设y=f(x),x=x0处的斜率=f'(x0)。 举例说明如下: y=x2,求x=1处斜率。 y'=2x,斜率=2×1=2。 导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。扩展资料 如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。 导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。

其他回答

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f'(x)为区间[a,b]上的导函数,简称导数,将坐标带入则为函数在此点斜率。

其他回答

假设已知切点是(c,d),导数方程是y=f(x) 斜率k的求解方法:k=f(c),即把切点的横坐标代入导数方程,此时得到的数字就是斜率 切线方程的求解方法:切线方程的一般形式是y=kx+b,其中k是斜率(在上面已经求得),b是截距。

我们只需要把切点坐标代入切线方程的一般形式,便可以把b求出。

最后,把k和b的数值代入y=kx+b,就可以得到切线方程。 拓展内容: 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。