全站数据
8 4 2 0 5 8 1

根据特征值怎么判断矩阵可逆

张家港建工培训 | 教育先行,筑梦人生!         
问题更新日期:2024-06-12 21:21:33

问题描述

根据特征值怎么判断矩阵可逆希望能解答下
精选答案
最佳答案

因为矩阵的行列式等于所有特征值的乘积,而矩阵可逆的充要条件是行列式不等于0,所以矩阵可逆的充要条件是所有特征值都不等于0。

设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是矩阵A的一个特征值(characteristic value)或本征值(eigenvalue)。

设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。