全站数据
8 4 2 0 5 8 1

gateaux导数的定义

IT鑫视界 | 教育先行,筑梦人生!         
问题更新日期:2024-06-20 15:26:36

问题描述

gateaux导数的定义,在线求解答
精选答案
最佳答案

定义:

导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

几何意义:

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

扩展资料:

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

其他回答

偏导数:函数在坐标轴方向上的变化率; 方向导数:函数在其他特定方向上的变化率。梯度:该点处变化率最大的方向。例:单位时间或单位距离内某种现象(如温度、气压、密度、速度等)变化的程度。