热门推荐








如何用面面垂直证明线面垂直
问题描述
- 精选答案
-
如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。求证:OP⊥β。证明:过O在β内作OQ⊥l,则由二面角知识可知∠POQ是二面角α-l-β的平面角。 ∵α⊥β ∴∠POQ=90°,即OP⊥OQ ∵OP⊥l,l∩OQ=O,l⊂β,OQ⊂β ∴OP⊥β拓展资料直线与平面垂直定义:如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”性质定理性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。性质定理2:经过空间内一点,有且只有一条直线垂直已知平面。性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。性质定理4:垂直于同一平面的两条直线平行。推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。)定理1证明很容易由线面垂直的定义得到,若不垂直于所有直线,则不可能垂直平面。定理2证明已知平面α和一点P,求证过P垂直于α的直线有且只有一条。当P在平面外时,假设过P有两条直线m、n都与α垂直,不妨设垂足为M、N。由于m∩n=P,那么m和n确定一个平面β。不难证明α∩β=MN。∵m⊥α,n⊥α∴m⊥MN,n⊥MN。这样一来,在β内就有PM、PN与MN都垂直,与平面内的垂线公理(其实是定理,因为可以依靠欧式几何的公理证明)矛盾。
猜你喜欢内容
-
耿直讨人嫌的上一句是啥
耿直讨人嫌的上一句是啥回答数有3条优质答案参考
-
“顺情说好话,耿直讨人嫌”什么意思
“顺情说好话,耿直讨人嫌”什么意思回答数有3条优质答案参考
-
顺情说好话耿直讨人嫌上一句
顺情说好话耿直讨人嫌上一句回答数有3条优质答案参考
-
绕了一圈又绕回来了用什么成语形容
绕了一圈又绕回来了用什么成语形容回答数有3条优质答案参考
-
研究生入编薪级标准
研究生入编薪级标准回答数有3条优质答案参考
-
一轮当空是什么意思
一轮当空是什么意思回答数有3条优质答案参考
-
秋天在草地上,小草后面怎么写
秋天在草地上,小草后面怎么写回答数有3条优质答案参考
-
源于历史的四字成语
源于历史的四字成语回答数有3条优质答案参考
-
来源历史的成语
来源历史的成语回答数有3条优质答案参考
-
一什么枣空词语
一什么枣空词语回答数有3条优质答案参考