全站数据
8 4 2 0 5 8 1

指数函数的导数公式怎么推

法律知识 | 教育先行,筑梦人生!         
问题更新日期:2024-04-20 03:06:44

问题描述

指数函数的导数公式怎么推希望能解答下
精选答案
最佳答案

设:指数函数为:y=a^xy'=lim【△x→0】[a^(x+△x)-a^x]/△xy'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△xy'=lim【△x→0】(a^x){[(a^(△x)]-1}/△xy'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)设:[(a^(△x)]-1=M则:△x=log【a】(M+1)因此,有:‘{[(a^(△x)]-1}/△x=M/log【a】(M+1)=1/log【a】[(M+1)^(1/M)

]当△x→0时,有M→0故:lim【△x→0】{[(a^(△x)]-1}/△x=lim【M→0】1/log【a】[(M+1)^(1/M)]=1/log【a】e=lna代入(1),有:y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△xy'=(a^x)lna证毕.