全站数据
8 4 2 0 5 8 1

基础解系怎么求

该学习了哦 | 教育先行,筑梦人生!         
问题更新日期:2024-04-20 05:54:56

问题描述

基础解系怎么求求高手给解答
精选答案
最佳答案

基础解系求法的具体步骤如下:第一步确定自由未知量,第二步对矩阵进行基础行变换,第三步转化为同解方程组,第四步代入数值,第五步求解即可。

基础解系是大学的高等数学的学习中很重要的知识点。首先,我们来了解一下基础解系的定义:基础解系是指方程组的解集的极大线性无关组,即若干个无关的解构成的能够表示任意解的组合。我们在求基础解系时,先确定自由未知量,我们可以设AX=b的系数矩阵A的秩为r,然后对矩阵A进行初等行变换。完成初等变换后,将得到的矩阵转化为同解方程组形式。并将自由未知量xr+1,xr+2,……,xn分别取值为(n-r)组数[1,0,...,0],[0,1,...,0],...,[0,1,0,...,0]。这时,再将其带入到矩阵的同解方程组中,我们就可以求得矩阵A的基础解系了。我们遇到具体的矩阵时,只需要套用公式即可。基础解系需要满足三个条件:

1、基础解系中所有量均是方程组的解。

2、基础解系线性无关,即基础解系中任何一个量都不能被其余量表示。

3、方程组的任意解均可由基础解系线性表出,即方程组的所有解都可以用基础解系的量来表示。

其他回答

基础解系怎么求

步骤:求出矩阵A的简化阶梯形矩阵;根据简化阶梯型矩阵的首元所在位置,写出自由未知量;根据简化阶梯型矩阵写出与之对应的齐次线性方程组t,该方程组与原方程组解相同;令自由未知量为不同的值,代入上述齐次线性方程组t,即可求得其基础解系。

极大线性无关组基本性质

1.只含零向量的向量组没有极大无关组;

2.一个线性无关向量组的极大无关组就是其本身;

3.极大线性无关组对于每个向量组来说并不唯一,但是每个向量组的极大线性无关组都含有相同个数的向量;

4.齐次方程组的解向量的极大无关组为基础解系。

5.任意一个极大线性无关组都与向量组本身等价。

6.一向量组的任意两个极大线性无关组都是等价的。

7.若一个向量组中的每个向量都能用另一个向量组中的向量线性表出,则前者极大线性无关向量组的向量个数小于或等于后者。