热门推荐








等差数列的证明方法是什么
证明等差数列的四种方法如下:
用定义证明,即证明an-an-1=m(常数);用等差数列的性质证明,即证明2an=an-1+an+1;证明恒有等差中项,即2An=A(n-1)+A(n+1);前n项和符合Sn=An^2+Bn。
等差数列的定义:
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
例如:
1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
等差数列的基本性质:
公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d;公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd;若{an}{bn}为等差数列,则{ an ±bn }与{kan +bn}(k、b为非零常数)也是等差数列。
对任何m、n ,在等差数列中有:an = am + (n-m)dm、n∈N+),特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性;一般地,当m+n=p+qm,n,p,q∈N+)时,am+an=ap+aq。
公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差);下表成等差数列且公差为m的项ak.ak+m.ak+2m.....(k,m∈N+)组成公差为md的等差数列。
在等差数列中,从第二项起,每一项(有穷数列末项除外)都是它前后两项的等差中项;当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。
等差数列的实际应用:
财务领域:等差数列可以用来计算定期存款、定投、等额本息还款等。物流领域:等差数列可以用来计算集装箱装卸的效率,也可以用来规划路线优化。
工程领域:等差数列可以用来计算钢筋的长度、钢板的长度等。地理领域:等差数列可以用来计算海拔的变化、海水的温度变化等。
医学领域:等差数列可以用来计算药物的剂量、药物的代谢等。教育领域:等差数列可以用来计算学习进度、考试成绩的变化等。
猜你喜欢内容
-
上大学要体检哪些方面?
大学入学体检项目:1.常规项目:血压、心率、身高、体重,胸围差、腹围臀围等,评估营养、形态发育等一...
-
艺术类大专比较好的学校有哪些?
①上海工艺美术职业学院上海工艺美术职业学院是上海市唯一一所独立设置的艺术设计类高职院校,是上海市...
-
艺术类专科有必要上吗?
其中艺术类专科还是有必要读的,其实不管是本科还是专科到了大学这个学习阶段,与高中的学习大大不同,...
-
设施农业与装备专业就业前景如何?
设施农业是最具活力的现代新农业,是实现集约高效可持续发展的现代农业生产方式,也是提高我国农村生产...
-
什么是工程物流管理专业?
工程物流管理是中国普通高等学校专科专业。本专业面向大型工程建设企业的工程物流一线技术管理岗位,培...
-
海洋机器人专业主要学什么?
海洋机器人是一门将水动力分析、控制技术、传感器技术、人工智能、计算机仿真等高科技手段综合运用于海...
-
电气工程师好不好找工作?
电气工程师工作很好找的,而且列了几点理由:①电气工程专业的需求量多年一直排在前十。②拿到证之后,...
-
大学生做兼职有哪些利弊?
一、利锻炼自己。能很好的锻炼自己各方面的能力,方便自己以后更好的融入到社会。增加阅历和经验,可以...
-
舞蹈编导专业就业前景怎么样?
编导系的主要就业行业是各舞蹈艺术团、电视台等,需求非常大。在文化高度发展的社会,政府高度重视精神...
-
什么是基础医学专业?
基础医学是中国普通高等学校本科专业。基础医学专业培养具备自然科学、生命科学和医学科学基础理论知识...