热门推荐








椭圆第二定律
分类: 教育/科学 >> 升学入学 >> 高考
问题描述:
什么是椭圆第二定律! 公式是什么! 和焦准线与焦半径有啥关系!
解析:
椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:
1:平面上到两点距离之和为定值的点的 *** (该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);
2:平面上到定点距离与到定直线间距离之比为常数的点的 *** (定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的
由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。如图,有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):
如图,将两个半径与圆柱半径相等的半球从圆柱两端相中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。设两点为F1、F2
对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2
则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2
由定义1知:截面是一个椭圆,且以F1、F2为焦点
用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆
高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2+b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)
关于圆锥截线的某些历史:圆锥截缐的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截缐的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截缐论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲缐的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲缐;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演着重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运\行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截缐不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。
猜你喜欢内容
-
普本教育专升本怎么样啊
普本教育专升本是一种针对专科应届毕业生的全日制本科教育形式。它属于国家普通高等教育体系,毕业后所...
-
普通二本考研一般考多少
二本考研的分数要求因年份、专业、地区等因素而异,但根据提供的信息,以下是一些概括性的参考分数:根...
-
专升本报名梯队怎么填
专升本报名梯队的填写需要综合考虑个人成绩、专业偏好、院校竞争情况等因素。以下是一些具体的填报建议...
-
泰安东区有什么学校初中
泰安东区拥有多所高等教育机构,包括以下几所高校:山东农业大学山东师范大学泰安校区泰山医学院泰安学...
-
广东高考在哪里查档案的状态
要查询广东高考档案的状态,您可以通过以下几种方式进行:访问[广东省教育考试院官方网站](http://www.g...
-
会计学硕考研国家线多少
2024年会计学硕的国家线如下:总分:340分英语:46分政治:46分专业课:69分建议:由于每年的分数线可能...
-
电子考研资料多少钱一套
考研电子版资料的价格因内容、质量、来源等因素而异,以下是一些具体的价格信息:某些电子版资料价格不...
-
考研复试六级多少分好过
考研复试中,英语六级成绩 至少需要达到425分。具体来说,有以下几点可以参考:多数院校要求学生至少通...
-
中传考研得多少学费一年
根据最新的信息,2025年中国传媒大学考研的学费如下:10000元/学年。28000元/学年。全日制:54000元/学...
-
武汉自治街有什么学校吗
武汉市第七十五中学地址:武汉市江汉区自治街41号简介:武汉市第七十五中学创建于1958年,校园环境优美...