全站数据
9 6 1 5 2 8 3

统计学考研专业课大纲 考研复习

心语心理 | 教育先行,筑梦人生!         

今天小编给大家带来的是高等代数统计学考研专业课大纲,希望看完能够对你有所帮助。

1.考试内容

统计学考研专业课大纲  考研复习

1.一元多项式理论:Z大公因式与因式分解,重因式,不可约多项式,复数域上的不可约多项式,实数域上的不可约多项式,有理系域上的不可约多项式,多元多项式环。

2.行列式:行列式的定义,行列式的计算及性质,Laplace展开定理。

3.线性方程组理论:Cramer法则,Gauss消元法,维向量的线性相(无)关性,向量组的秩和矩阵的秩,线性方程组有解的判别,线性方程组解的结构。

4.矩阵:矩阵的混合运算,方阵的行列式,矩阵的逆,矩阵的分块,初等矩阵,正交矩阵,欧几里得空间。

统计学考研专业课大纲  考研复习

5.矩阵的相抵与相似:矩阵的相抵,广义逆矩阵,矩阵的相似,矩阵的特征值和特征向量,矩阵可对角化的条件,实对称矩阵的对角化。

6.二次型:二次型及其标准形,实二次形的规范形,正定二次型与正定矩阵。

7.线性空间:线性空间的结构,子空间以及子空间的交与和,子空间的直和,线性空间的同构,商空间。

8.线性映射:线性映射及其运算,线性映射的核与象,线性映射的矩阵表示,线性变换的特征值与特征向量,线性变换的不变子空间,Hamilton-Cayle定理,线性变换的Z小多项式,幂零变换的结构,线性变换的Jordan标准形,线性函数与对偶空间。

9.具有度量的线性空间:双线性函数,欧几里得空间,正交补和正交投影,正交变换与对称变换,酉空间。

统计学考研专业课大纲  考研复习

2.考试要求

了解:代数基本定理,复系数与实系数多项式的因式分解定理,高斯引理,广义逆矩阵,线性空间的同构,正交变换。

理解:Laplace展开定理,n维向量的线性相(五)关性,矩阵的秩,矩阵的可逆性,实二次型的分类,线性空间的维数,线性变换的值域与核,线性变换的Jordan标准形。

掌握:行列式的计算,线性方程组解的判别、求解及解的结构,求可逆矩阵的逆矩阵,利用分块方法计算矩阵,求标准正交基,矩阵的对角化,实对称矩阵的对角化,化简二次型的方程,二次形的正(负)定性判别,求线性空间的维数与基底,基变换与坐标变换,子空间的交与和,子空间的直和,求线性变换的不变子空间,Hamilton-Cayle定理,线性变换的Z小多项式,幂零变换的结构,线性变换的Jordan标准形,求线性映射的矩阵表示,线性映射的特征值与特征向量,双线性函数,正交变换与对称变换,

猜你喜欢内容

更多推荐